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Optimal Control of Differentially Flat
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Goal: Fast Motion Planning

Parc du Haut-Fourneau U4 by TomFPV, Youtube



Flatness + Optimal Control

The Problem with Constraints

Heuristic Algorithm
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Related Work

¢ Method of Evolving Junctions
= Li, Chow, Egerstedt, Lu, and Zho, (2017); Zhai, Hou, Zhang, and Zhou, (2021)

o NOSNOC
= A.Nurkanovi¢ and M. Diehl (2022); A.Nurkanovic et al., (2023)

¢ Collocation Methods

= Andersson, Gillis, Horn, Rawlings, and Diehl (2019), Ross (2012), Murray (2008),
Wachter and Biegler (2006),

¢ Differential Flatness

= Fleiss et al., (1995); Petit, Milam, and Murray, (2001); Sira-Ramirez and Agrawal,
(2004); Chaplais and Petit, (2007, 2008); Levine, (2011)
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Differential Flatness
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Differential Flathess

¢ Property of nonlinear systems
¢ Mapping between coordinates®

¢ New system has linear dynamics

Yy

Cost: J(x,u) Invertible mapping* Cost: J(s, a)

\_ Pynamics: x = f(x,u) //\\ //ZDynamlcs: §=As+ba )

4 N

States: x, u States: s, a

*no exogenous coordinates, differentially independent



Differential Drive Robot

¢ Original Coordinates

pr 9' UL' UR
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¢ Polar Coordinates
p,v,0,w

v
@ —~ = tan(8)
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vl =v

¢ Flat Coordinates
p,v




PMP for Linear Systems

¢ Follow the standard approach of Bryson and Ho

H(s,a,A) =J(s,a) + 2- f(s,a) + u-g(s,a)

o Minimize the Hamiltonian
0H
——=
. O0H
s

¢ Numerically unstable ODE in general



Linear Systems Trick

H(s,a, 1) =J(s,a) + A -f(s,a) + u-g(s,a)

o Partial derivatives simplify!
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¢ Resulting ODEs,
Ja+A"b +MTga =0
/:lx = —Js — ATA + ﬂTgs



Solution Overview

_ Integrator System Pontryagin Minimum
Nqnllnear OCP §,™ = gD Principle
x=f(xu) Differential ;1) = all. H=]+A'f+u'g
Flatness i chains, k; links

Motion primitive generator
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Mothn_ primitives 2191 primitives Z(_l)nﬁ(]’;(n) + ﬂTgs(”)) =0

for original system Differential =0 SN i
Flatness



Dynamic Motion Primitives

Ki
dn
Z(_l)n dtn (]Si(n) + ﬂTgSi(n)) = ()
n=0

o Toggle elements of u “on” and “off

¢ Solve ODE + algebraic equations to generate motion primitives

o At most 29! cases



The Problem with Constraints

1. Beaver, L. E., Tron, R, & Cassandras, C. G. (2023). A graph-based approach to generate energy-optimal robot trajectories in polygonal environments. IFAC-PapersOnLine, 56(2).
2. Malikopoulos, A. A., Beaver, L., & Chremos, I. V. (2021). Optimal time trajectory and coordination for connected and automated vehicles. Automatica, 125, 109469.




Constraint Junctions

¢ Known “standard” form at time t,

o Easily converts to state conditions



Shooting Method

¢ Given a constraint sequence,
o Apply jump conditions for 4, H
o For example, ||al|? in cost — continuity in a

a(ty) = a(t)

o System of algebraic equations at the junction
x(ty) = x(tf)
u(ty) = u(ty)

o Linear for a “guess” of t;
¢ 1 Equation + 1 unknown



Optimal Trajectories

¢ Given a constraint, easy to solve

¢ What is the optimal sequence?




Implications

¢ Both solutions satisfy PMP
¢ Both solutions are convex
¢ Any constraint breaks convexity!

¢ NP-Hard integer program?




ACC Example

Energy Cost Optimality Gap

0 &,458 units 0%
h 8,561 units 1.2%

OCP with vy (1)
OCP with vy (1)
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Heuristic Algorithm

1. Beaver, L. E., Tron, R, & Cassandras, C. G. (2023). A graph-based approach to generate energy-optimal robot trajectories in polygonal environments. IFAC-PapersOnLine, 56(2).
2. Malikopoulos, A. A., Beaver, L., & Chremos, I. V. (2021). Optimal time trajectory and coordination for connected and automated vehicles. Automatica, 125, 109469.




Shooting Method Decomposition

¢ Motion primitives connected
with junctions

¢ Solve optimal trajectory given
the active constraints

¢ Which constraints to consider?




Resulting Splines + Optimality

n

ki

d
Z(—l)nw (]Si(n) + [,ngSi(n)) =0
n=0

¢ Unconstrained: it* =0

¢ Constrained:u* -n;, =0

At junctions:

o Continuity in x*, u*, v*" u*

¢ Unknown x*, t* at junction




The Integer Problem

¢ OCP is easy, given constraints

¢ Which constraints to select?
¢ Fully-connected graph, unknown cost
¢ No admissible heuristic




Search-Based Solution

Input: Vertices
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Find Shortest
Straight-Line Path

Discard Prefix

Feasible
Prefix?

Feasible
Path?

Branch & Bound Generate Nodes




Constrained Motion Planning
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Maze Solving

¢ Proposed vs RRT and PRM
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High Degree of Freedom Systems

¢ Scales with number of vertices
¢ “Independent” of dimension

¢ Environmental preprocessing?

Image: Wikimedia commons



Main Takeaways

¢ Flatness makes optimal control “easy”
o Out-performs state-of-the-art planning
¢ Constraints (even linear) cause problems

¢ Hybrid optimal + sampling techniques?
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