

1

Tokyo Tech

Coverage Hole Prevention for Environmental Monitoring with Quadcopters

Riku Funada Tokyo Institute of Technology

2024/July/05 University of Waterloo

Visual Monitoring & Quadcopters

How to monitor an environment while avoiding overlooks of events/objects by a team of quadcopters

Coverage Control

Coverage control with uniform density Coverage control with a human specified density

Deploy mobile sensors to optimally collect the data

[1] J Cortes, S Martinez, T Karatas, F Bullo, Coverage control for mobile sensing networks, IEEE Trans. Robotics and Automation vol. 20, no 2, pp. 243-255, 2004

Applications to drones

[2] M. Schwager, B. J. Julian, M. Angermann, and D. Rus, Eyes in the Sky: Decentralized Control for the Deployment of Robotic Camera Networks, Proc. the IEEE, vol. 99, no. 9, pp. 1541–1561, 2011.

Coverage Control

Robot Dynamics: $\dot{p}_i = u_i$

Density Function: ϕ

4

Robot Robot 2 ●: Robot

Coverage Performance

Sampei Laboratory **[1] J Cortes, S Martinez, T Karatas, and F Bullo, Coverage control for mobile sensing networks, IEEE Trans. Robotics and Automation, vol. 20, no. 2, pp. 243-255, 2004**

Coverage Control

Control input $u_{i,cov} = \left(\frac{\partial J}{\partial p_i}\right)(p) = M_i(p)(C_i(p) - q_i)$

The standard Voronoi partition $\mathcal{V}_i(p) = \{q \in \mathcal{Q} \mid ||q - p_i|| \le ||q - p_j|| \quad \forall j \neq i\}$ Euclidean distance $M_i(p)$: Area of Voronoi region

 $C_i(p)$: Centroid of Voronoi region

Robot i converges to a centroid of its Voronoi region $V_i(p)$.

Coverage control can be applied to drone network.

With limited field of view, the unmonitored area may appear in-between the team.

Avoid overlooking of targets appearing small from the sky

Cover the important area completely not to miss events

Prevent the appearance of coverage holes

while maximizes the monitoring performance via the coverage control.

Coverage hole: the generalized Voronoi diagram

Power diagram [3]

A generalized Voronoi diagram accounting heterogeneity of a sensing radius

Horizontal distance from Robot i Sensing radius of Robot i

 $\mathcal{V}_i(p) = \{q \in \mathcal{Q} \mid d_{\mathcal{P}}(\mathbf{p}_i, q) \leq d_{\mathcal{P}}(\mathbf{p}_i, q) \ \ \forall j \neq i\}$

Preventing coverage holes among a team

 $d_{\mathcal{P}}(\mathbf{p}_i, q) = ||[q_x \ q_y]^T - [x_i \ y_i]^T||^2 - R(\mathbf{p}_i)^2$

Each drone should confine Vonoronoi vertices of its cell, created by the trio determined by the triangular subgraphs, in its FOV.

Divide the problem into each triangular subgraph

7

Tokvo Tecl

8 Quadcopters Via Nonsmooth Control Barrier Functions, IEEE Tr<mark>ansactions on Robotics, vol. 40, pp. 1</mark>546-1565, 2024. **[4] R. Funada, M. Santos, R. Maniwa, J. Yamauchi, M. Fujita, M. Sampei, and M. Egerstedt, Distributed Coverage Hole Prevention for Visual Environmental Monitoring With**

Conditions not to make a hole

Explicit form of the set $(v_{ijk} \in \mathcal{F}_i) \vee (v_{ijk} \notin \triangle IJK)$

v_{ijk}	$v_{ijk} \in \mathcal{F}_i$	$h_{i,\mathcal{F}} = R(\mathbf{p}_i)^2 - \left\ v_{ijk} - \begin{bmatrix} x_i & y_i & 0 \end{bmatrix}^T \right\ ^2 > 0$	
\mathcal{F}_i	$R(\mathbf{p}_i)$: The radius of <i>i</i> 's field of view \mathcal{F}_i		
\mathbf{K}	\mathbf{J}	$v_{ijk} \notin \triangle IJK$	$(h_{IJ} > 0) \vee (h_{JK} > 0) \vee (h_{KI} > 0)$
v_{ijk}	$h_{IJ} > 0$	$h_{IJ} > 0$ when v_{ijk} and $\triangle IJK$ are in the different half plane	

 $(v_{ijk} \in \mathcal{F}_i) \vee (v_{ijk} \notin \triangle IJK)$ $\begin{bmatrix} h_{i,\triangle IJK} = \max\{h_{i,\mathcal{F}}, h_{IJ}, h_{JK}, h_{KI}\} > 0 \end{bmatrix}$

How to integrate this constraint to the coverage control?

9 Quadcopters Via Nonsmooth Control Barrier Functions, IEEE Tr<mark>ansactions on Robotics, vol. 40, pp. 1</mark>546-1565, 2024. **[4] R. Funada, M. Santos, R. Maniwa, J. Yamauchi, M. Fujita, M. Sampei, and M. Egerstedt, Distributed Coverage Hole Prevention for Visual Environmental Monitoring With**

Control Barrier Function (CBF)

Sampei Laboratory **[5] A. D. Ames, J. W. Grizzle and P. Tabuada, Control barrier function based quadratic programs with application to adaptive cruise control, CDC, pp. 6271-6278, 2014.**

Tokyo Tecl

10

CBF & Quadratic Programming(QP)-based Controller

11

CBF preventing coverage hole

 $(v_{ijk} \in \mathcal{F}_i) \vee (v_{ijk} \notin \triangle IJK)$ \longrightarrow $h_{i,\triangle IJK} = \max\{h_{i,\mathcal{F}}, h_{IJ}, h_{JK}, h_{KI}\} > 0$

Near a nonsmooth point p_i , gradients composing $\partial h(p_i)$ need to be included [6].

$$
h_i = \max\{h_{i,\ell}\} \ell \in \{1,2,3,4\}
$$
\n
$$
h_i = \max\{h_{i,1}, h_{i,2}, h_{i,3}, h_{i,4}\}
$$
\n
$$
h_i = \max\{h_{i,1}, h_{i,2}, h_{i,3}, h_{i,4}\}
$$
\n
$$
I_{\epsilon,i}(\mathbf{p}_i) = \{\ell \mid ||h_{i,\ell}(\mathbf{p}_i) - h_i(\mathbf{p}_i)|| < \epsilon\} = \{1,2\}
$$
\n
$$
\mathbf{p}_i \quad \partial h_{i,1} \text{ and } \partial h_{i,2} \text{ is included.}
$$

QP-based controller

QP can be distributed (though conservative) using the symmetric nature of $h_{i,\ell}$, $h_{j,\ell}$ and $h_{k,\ell}$, $\forall \ell \in \{1,2,3,4\}$.

Functions, CCTA, pp. 897-902, 2018. [6] P. Glotfelter, J. Cortés and M. Egerstedt, Boolean Composability of Constraints and Control Synthesis for Multi-Robot Systems via Nonsmooth Control Barrier

Switching of the graph & CBF

Graph change can cause addition/subtraction of CBF to be considered [7].

Systems, RA-L, pp. 1303-1310, 2019. **[7] P. Glotfelter, I. Buckley, and M. Egerstedt, Hybrid Nonsmooth Barrier Functions With Applications to Provably Safe and Composable Collision Avoidance for Robotic**

Simulation

The proposed method prevents holes, while achieving the same coverage performance $u_{i,\rm cov.}$

 $h > 0$, hence the prevention of coverage holes, is achieved except for $k \simeq 750$.

At $k \simeq 750$, a graph change causes the sudden appearance of a hole, but the proposed algorithm successfully eliminates it.

Experiment 1: Coverage Hole Prevention Only

4 quadcopters start from the lower-left corner. Thier fields of view are virtually set (depicted as cones). ౹Ѧ

Tokyo Tech

Experiment 2: Object Search Scenario

Task Specification via Coverage Control and Visual Feedback

Control input & Constraints are switched depending on the situation.

[9] G. Notomista, S. F. Ruf and M. Egerstedt, Persistification of Robotic Tasks Using Control Barrier Functions, RA-L, vol. 3, no. 2, pp. 758-763, 2018. **[8] K. Sugimoto, T. Hatanaka, M. Fujita and N. Huebel, Experimental study on persistent coverage control with information decay, SICE AC, pp. 164-169, 2015.**

Prevent coverage hole Flight time limit [9]

Experimental setting

Field 2.2×3.2 m

Virtual Charging Stations

Target Object

Tokyo Tech Robot Zoo Sky

[10] J. Yamauchi, T. Gencho, R. Funada, T. Hatanaka, and M. Fujita, Persistent Visual Coverage Control Ensuring Field of Views' Overlap with Information Reliability and Energy Management, IEEJ Trans. Electronics, Information and Systems, vol. 141, no. 3, pp. 417-425, 2021. (Written in Japanese)

17

Tokyo Tech

Sampei Laboratory

Conclusion and Future works

Conclusion

- \checkmark We propose the visual monitoring method that prevents the appearance of coverage holes.
- \checkmark Visual feedback is integrated in the object-search scenario.

Future works

- \Box Evaluation utilizing a virtual environment.
- Outdoor experiment and implementation in the real application scenario.

Persistent Exploration by Team of Quadcopters